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Abstract. Limiting fragmentation in proton–proton, deuteron–nucleus and nucleus–nucleus collisions is
analyzed in the framework of the Balitsky–Kovchegov equation in high energy QCD. Good agreement with
experimental data is obtained for a wide range of energies. Further detailed tests of limiting fragmentation
at RHIC and the LHC will provide insight into the evolution equations for high energy QCD.

1 Introduction

The hypothesis of limiting fragmentation in high energy
hadron–hadron collisionswas suggestednearly four decades
ago [1]. This hypothesis states that the produced particles,
in the rest frame of one of the colliding hadrons, will ap-
proach a limiting distribution. These universal distribu-
tions describe themomentumdistributions of the fragments
of the other hadron. Central to the original hypothesis of
the limiting fragmentation in [1] was the assumption that
the total hadronic cross sections would become constant
at large center-of-mass energy. If this occurred, the excita-
tion and break-up of a hadron would be independent of the
center-of-mass energy and distributions in the fragmenta-
tion regionwould approach a limiting curve.
We now know that the total hadronic cross sections

are not constant at high energies. Instead, to the high-
est energies achieved, they grow slowly with the center-
of-mass energy

√
s, with favored functional forms being

either a power law behavior σ(s) ∝ sα with α≈ 0.08 [2] or
a σ(s)∝ ln2(s) [3–5]. A measurement of the total cross sec-
tion at the LHC [6] will further help constrain the possible
functional forms.
Even though the cross sections are not constant, lim-

iting fragmentation appears to have a wide regime of va-
lidity. It was confirmed experimentally in pp̄, pA, πA and
nucleus–nucleus collisions at high energies [7–11]. More re-
cently, the BRAHMS and PHOBOS experiments at the
Relativistic Heavy Ion Collider (RHIC) at BrookhavenNa-
tional Laboratory (BNL) have performed detailed stud-
ies of the pseudo-rapidity distribution of the produced
charged particles dNch/dη for a wide range (−5.4 < η <
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5.4) of pseudo-rapidities, and for several center-of-mass en-
ergies (

√
sNN = 19.6, 62.4, 130 and 200GeV) in nucleus–

nucleus (Au–Au and Cu–Cu) and deuteron–nucleus (d–
Au) collisions. Results for pseudo-rapidity distributions
have also been obtained over a limited kinematic range
in pseudo-rapidity by the STAR experiment at RHIC [12,
13]. These measurements in A–A and d–A collisions were
performed for several centralities. In addition to the d–
Au and A–A data, there are pp data at

√
s= 200GeV and

also at
√
s = 410GeV. (In the near future, data at

√
s =

500GeVmay become available.) These measurements have
opened a new and precise window on many scaling phe-
nomena glimpsed at lower energies. In particular, they
have performed detailed studies of the limiting fragmen-
tation phenomenon. The pseudo-rapidity distribution dNdη′
(where η′ ≡ η−Ybeam is the pseudo-rapidity shifted by the
beam rapidity ybeam = ln

√
s/mp) is observed to become

independent of the center-of-mass energy
√
s in the region

around η′ ∼ 0

dNch
dη′
(η′,
√
s, b)≡

dNch
dη′
(η′, b) , (1)

where b is the impact parameter.
It is worth noting that this scaling is in a strong dis-

agreement with boost invariant scenarios which predict
a fixed fragmentation region and a broad central plateau
growing with energy. It would therefore be desirable to
understand the nature of hadronic interactions that lead
to limiting fragmentation and the deviations away from
it. In a recent article, Bia�las and Jeżabek [14], argued
that some qualitative features of limiting fragmentation
can be explained in a two-step model involving multiple
gluon exchange between partons of the colliding hadrons
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and the subsequent radiation of hadronic clusters by the
interacting hadrons. In this paper, we compute limiting
fragmentation within the color glass condensate (CGC)
approach [15] to high energy hadronic collisions – its rela-
tion to the Bia�las–Jeżabek model will be addressed briefly
later.
In the CGC formalism, gluon production in the limiting

fragmentation region can be described, at leading order, in
the framework of k⊥-factorization. Under this assumption,
the inclusive cross section for produced gluons is expressed
as the convolution of the “unintegrated parton distribu-
tions” in the projectile and target respectively1,

φA(x1, k1⊥ ≡ |k1⊥|)

×φB(x2, k2⊥ ≡ |k2⊥|)δ
(2)(p⊥−k1⊥−k2⊥) , (2)

times a (transversemomentum dependent) vertex squared.
As we shall emphasize later, the name “unintegrated par-
ton distributions” though conventional is somewhat impre-
cise because the objects φA,B that enter in this formula
differ from the expectation value of the gluon number op-
erator. In (2), x1 and x2 are the longitudinal momentum
fractions of the gluons probed in the projectile and target,
namely,

x1 ≡
p⊥

mN
ey−Ybeam , x2 ≡

p⊥

mN
e−y−Ybeam , (3)

where Ybeam ≡ ln(
√
s/mN ) is the beam rapidity,mN is the

nucleon mass, and p⊥ = k1⊥+k2⊥ is the transverse mo-
mentum of the produced gluon. We should emphasize that
the kinematics here is the 2→ 1 eikonal kinematics, which
provides the leading contribution to gluon production in
the CGC picture.
As we will discuss further later, k⊥-factorization ac-

tually works best in the limiting fragmentation kinemat-
ics where x1 ≥ 0.1 and x2 � 1 (or vice versa). Clearly,
k⊥-factorization tells us that the cross sections depend in
general on both y−Ybeam and y+Ybeam. However, tar-
get limiting fragmentation implies a dependence on solely
y−Ybeam of the spectrum of produced particles integrated
over the transverse momentum. As we shall see in Sect. 2,
such a scaling emerges in a straightforward manner in the
k⊥-factorization framework if a) the typical transverse mo-
mentum in the projectile is much smaller than the typical
transverse momentum in the target, and b) if unitarity is
preserved in the evolution of the target with x2. These two
conditions are naturally fulfilled in the CGC picture when
x2 becomes so small that the target reaches the “black
disk” limit. More importantly, by studying how this limit
is reached, one gets some insight into systematic deviations
away from the limiting fragmentation.

1 Here and in the following, we call the “projectile” the nu-
cleus A which is probed at large x1, and “target” the nucleus
B which is probed at small values of x2. Of course, our choice
of semantics, reminiscent of what is used in fixed target experi-
ments, is somewhat arbitrary in collider experiments where the
lab frame and the center-of-mass frame are identical.

The dynamical evolution of the unintegrated distribu-
tions with x are described in the CGC by the renormaliza-
tion group equations called the JIMWLK equations [16–
22]. These equations, more generally, describe the x evolu-
tion of n-point parton correlation functions. The dynamics
in the evolution at high parton densities is characterized
by a “saturation momentum” Qs(x). This scale is the typ-
ical transverse momentum of partons in the hadron or
nuclear wave-function2. Partons with p⊥� Qs saturate
in the wave-function with occupation numbers of order
1/αs. The implications of saturated or “black disc” distri-
butions for limiting fragmentation were studied previously
in the CGC approach3 by Jalilian–Marian [25] and in the
work of Kharzeev and Levin [26] and later by Kharzeev,
Levin and Nardi [27–30]. In [25], it was a priori assumed
that the target is very dense and appears black to the
dilute partons in the projectile. This leads to the simple
formula

dNch
dη
∼
[
x1f

A
q (x1, µ

2)+x1G
A(x1, µ

2)
]
, (4)

for the rapidity distribution of the produced hadrons in
AA collisions, where x1f

A
q (x1) and x1G

A(x1) are the quark
and gluon distributions in the projectile nucleus. With
a suitable choice of a scale µ in these distributions, this
prescription gave a reasonable description of the fragmen-
tation region.
In [26], the k⊥-factorization formalism was employed,

together with a “saturation” ansatz for the unintegrated
gluon distribution4. Our approach to computing the in-
clusive gluon production in the saturation scenario is very
similar in spirit to the one pioneered in [26–30]. Here
however, the unintegrated gluon distributions at small x
(x≤ 0.01) are computed using a mean field version of the
JIMWLK equations called the Balitsky–Kovchegov (BK)
equation [33–38]. This approximation is strictly valid in
the large Nc, large mass number A and high energy limit.
However, the BK equation may have a wider range of ap-
plicability beyond these asymptotic limits. Remarkably,
it has been shown recently that the BK equation lies in
the same universality class as the Fisher–Kolmogorov–
Petrovsky–Piscounov equation in statistical mechanics,
which describes a wide range of reaction–diffusion phe-
nomena in nature [39]. We will discuss results for limiting
fragmentation from solutions of the BK equation for un-
integrated distributions in both the fixed and running
coupling cases.
For x > 0.01, the unintegrated distribution, computed

using the BK equation, is smoothly matched on to a func-
tional form that contains key features expected of large x
parton distributions. We will also discuss what more de-

2 Q2s is also related to the density of color charges per unit of
transverse area in the hadron under consideration.
3 Limiting fragmentation of protons in the CGC was studied
previously in [23,24] albeit no comparisons to data were per-
formed in this work.
4 This ansatz is not the same ansatz as what one obtains in
the McLerran–Venugopalan model [31,32].
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tailed comparisons to the data can teach us about these
distributions.
This article is organized as follows. In Sect. 2, we dis-

cuss inclusive gluon production in high energy hadron and
nuclear collisions. In the kinematical region of interest, k⊥-
factorization is applicable; this allows us to relate the dis-
tribution of produced gluons to the unintegrated gluon dis-
tributions in the hadron wave-functions. Parton–hadron
duality [40] is assumed to compare the distribution of pro-
duced gluons to those of hadrons. (The effect of fragmenta-
tion functions can be significant at higher energies – a qual-
itative discussion is presented in Sect. 4.) The evolution of
the unintegrated gluon distributions (with x1 and x2 re-
spectively) in the projectile and target wave-functions is
described by solutions of the BK equation. The fixed and
running coupling forms of the BK equation and its solu-
tion are discussed in Sect. 3. Results for gluon distributions
obtained from numerical solutions of the BK equation are
compared to data on limiting fragmentation in Sect. 4. We
compare our results to data from pp, deuteron–gold and
AA collisions and discuss their dependence on the initial
conditions, running coupling effects and on infrared reg-
ulators. Our results are summarized and open problems
emphasized in the concluding section.

2 Inclusive particle production
in high energy collisions

At very high energies, for
√
s
Qs ≥ pT, gluon production

and fragmentation is the dominant mechanism for particle
production. When the occupation number of partons is
small in one of the colliding hadrons and large in the other
(as is the case in proton–nucleus or nucleus–nucleus colli-
sions in the fragmentation region of one of the nuclei), the
inclusive multiplicity distribution of produced gluons can
be expressed in the k⊥-factorized form [41,42,32]

dNg

dyd2p⊥
=

αsSAB

2π4CF(πR2A)(πR
2
B)

1

p2⊥

×

∫
d2k⊥
(2π)2

φA(x1, k⊥)φB
(
x2,
∣∣p⊥−k⊥

∣∣) . (5)

Strictly speaking, the formula as written here is only valid
at zero impact parameter and assumes that the nuclei have
a uniform density in the transverse plane. Indeed, the func-
tions φA,B are defined for the entire nucleus. Here, SAB
denotes the transverse area of the overlap region between
the two nuclei, while πR2A,B are the total transverse area
of the nuclei, and CF ≡ (N2c −1)/2Nc is the Casimir oper-
ator in the fundamental representation. The longitudinal
momentum fractions x1 and x2 were defined previously in
(3).
The functions φA and φB are obtained from the dipole–

nucleus cross sections for nuclei A and B respectively,

φA,B(x, k⊥)

≡
πR2A,Bk

2
⊥

4αsNc

∫
d2x⊥e

ik⊥·x⊥
〈
Tr
(
U†(0)U(x⊥)

)〉
Y
, (6)

where Y ≡ ln(1/x) and where the matrices U are adjoint
Wilson lines evaluated in the classical color field created by
a given partonic configuration of the nuclei A or B in the
infinite momentum frame. For a nucleus moving in the −z
direction, they are defined to be

U(x⊥)≡ T+ exp

⎡

⎣−ig2
+∞∫

−∞

dz+
1

∇2⊥
ρ(z+,x⊥) ·T

⎤

⎦ .

(7)

Here the T a are the generators of the adjoint represen-
tation of SU(Nc) and T+ denotes the “time ordering”
along the z+ axis. ρa(z

+,x⊥) is a certain configuration of
the density of color charges in the nucleus under consid-
eration, and the expectation value

〈
· · ·
〉
corresponds to

the average over these color sources ρa. In the McLerran–
Venugopalan (MV) model [43–45], where no quantum evo-
lution effects are included, the ρ’s have a Gaussian distri-
bution, with a 2-point correlator given by 〈ρa(0)ρb(x⊥)〉=
µ2Aδabδ

(2)(x⊥−y⊥), where µ2A ≡
A

2πR2
A

. This determines

φA,B completely [42,32], since the 2-point correlator is all
we need to know for a Gaussian distribution. As we will dis-
cuss later, the small x quantum evolution of the correlator
in (6) is given by the BK equation.
These distributions φA,B, albeit very similar to the

canonical unintegrated gluon distributions in the hadrons,
should not be confused with the latter [31,32]. However,
at large k⊥ (k⊥
Qs), they coincide with the usual un-
integrated gluon distribution and this determines their
normalization5.
The k⊥-factorized expression in (5) is only valid for in-

clusive gluon production when one of the hadrons is di-
lute and the other is dense. In the CGC framework, this
means that we keep only terms of orders O(ρA/k2⊥) and
O(ρnB/k

2n
⊥ ) in the amplitudes, if A and B are the dilute

and dense hadrons respectively. This factorization is there-
fore applicable for proton–proton collisions, or nucleus–
nucleus collisions in the fragmentation region of one of the
projectiles. Clearly, it applies as well to proton/deuteron–
gold collisions. k⊥-factorization breaks down in kinematic
regions that do not satisfy this dilute–dense criterion. It
particular, it is not a good approximation in the central ra-
pidity region. Although there are some analytical attempts
to address these violations of k⊥-factorization [46], these
have been computed only numerically [47–49] thus far.
For quark production, k⊥-factorization is broken already
at leading order [50]. The magnitude of this breaking has
been quantified recently [51,52]. Here we will consider only
the k⊥-factorized expression of (5) with the understand-
ing that this expression likely has significant corrections at
central rapidities. These will be discussed further later in
the paper.

5 The unintegrated gluon distribution here is defined such
that the proton gluon distribution, to leading order, satisfies

xGp(x,Q
2) = 1

4π3

∫Q2
0 dl2⊥φp(x, l⊥). This normalization is dif-

ferent from [31] – we have checked however that, when ap-
propriately normalized, our expression for the inclusive gluon
distributions is identical to that of [31].
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From (5), it is easy to see how limiting fragmentation
emerges in the limit where x2� x1. In this situation, the
typical transverse momentum k⊥ in the projectile is much
smaller than the typical transverse momentum

∣
∣p⊥−k⊥

∣
∣

in the target, because these are controlled by saturation
scales evaluated respectively at x1 and at x2. Therefore, at
sufficiently high energies, it is legitimate to approximate
φB(x2,

∣
∣p⊥−k⊥

∣
∣) by φB(x2, p⊥). When we integrate the

gluon distribution over p⊥, we thus obtain

dNg
dy
=

αsSAB

2π4CF(πR2A)(πR
2
B)

×

∫
d2p⊥
p2⊥
φB(x2, p⊥)

∫
d2k⊥
(2π)2

φA(x1, k⊥)

=
SAB

π3R2A

∫
d2k⊥
(2π)2

φA(x1, k⊥)

�
SAB

πR2A
x1g(x1, µ

2 �Q2s (x2)) . (8)

This expression, in the stated approximation, is nearly in-
dependent of x2 and therefore depends only weakly on y−
Ybeam. To see this more clearly, note that, to obtain the sec-
ond line in the above expression, we used (6) and the fact
that the Wilson line U is a unitary matrix. The details of
the evolution are therefore not important to achieve lim-
iting fragmentation, only that the evolution equation pre-
serve unitarity. The residual dependence on x2 comes from
the upper limit∼QBs (x2) of the integral in the second line.
This ensures the applicability of the approximation that
led to the expression in the second line above. The integral
over k⊥ gives the integrated gluon distribution in the pro-
jectile, evaluated at a resolution scale of the order of the
saturation scale of the target. Therefore, the residual de-
pendence on y+Ybeam arises only via the scale dependence
of the gluon distribution of the projectile. This residual de-
pendence on y+Ybeam is very weak at large x1 because it is
the regime where Bjorken scaling is observed.
The formula in (8) was used previously in [25]. The

nuclear gluon distribution here is determined by global
fits to deep inelastic scattering and Drell–Yan data. We
note that the glue at large x is very poorly constrained at
present [53–56]. The approach of Bialas and Jezabek [14]
also amounts to using a similar formula, although convo-
luted with a fragmentation function (see (1), (4) and (5)
of [14] – in addition, both the parton distribution and the
fragmentation function are assumed to be scale indepen-
dent in this approach). We will discuss the effect of frag-
mentation functions later in our discussion.
Though limiting fragmentation can be simply under-

stood as a consequence of unitarity in the high energy
limit, what may be more compelling are observed devia-
tions from limiting fragmentation and how these vary with
energy. These deviations may probe more deeply our un-
derstanding of the dynamics of both large x and small x
modes in hadronic wave-functions. In particular, in the
small x case, it may provide further insight into the renor-
malization group equations that, while trivially preserving
unitarity, demonstrate interesting pre-asymptotic behav-
ior. These concerns provide the motivation for this detailed

study with the Balitsky–Kovchegov renormalization group
equation to be discussed in the following section.

3 Balitsky–Kovchegov equation

We begin by briefly recapitulating key features of the
Balitsky–Kovchegov (BK) equation and its solution [33–
38]. Readers are referred to recent review literature on
the subject for a more detailed discussion [15,57]. The
BK equation is a non-linear evolution equation in rapid-
ity Y = ln(1/x) for the forward scattering amplitude of
a quark–antiquark dipole scattering off a target in the limit
of very high center-of-mass energy

√
s. It was originally de-

rived, within the dipole picture (which assumes the large
Nc limit) at small values of the Bjorken variable x, by tak-
ing into account multiple rescatterings of the qq̄ dipoles off
a dense nuclear target. The BK equation for the amplitude
is equivalent to the corresponding JIMWLK equation [16–
22] of the color glass condensate in a mean field (large Nc
and large A) approximation where higher order dipole cor-
relators are neglected. The parametrically suppressed Nc
andA contributions can, in principle, be computed by solv-
ing the JIMWLK equation. In momentum space, the BK
equation takes the form6

∂T̃ (k⊥, Y )

∂Y
= αs(K⊗ T̃ )(k⊥, Y )−αsT̃

2(k⊥, Y ) , (9)

where we denote αs ≡ αsNc/π. The operator K is the well
known BFKL kernel in momentum space [59–61], whose
action on the function T̃ is given by

(K⊗ T̃ )(k⊥, Y )≡

+∞∫

0

d(k′2⊥)

k′2⊥

×

{
k′2⊥T̃ (k

′
⊥, Y )−k

2
⊥T̃ (k⊥, Y )∣

∣k2⊥−k
′2
⊥

∣
∣ +

k2⊥T̃ (k⊥, Y )√
4k′4⊥+k

4
⊥

}

.

(10)

The function T̃ (k⊥, Y ) is the Bessel–Fourier transform of
the dipole–target scattering amplitude T (r⊥, Y ):

T̃ (k⊥, Y ) =

+∞∫

0

dr⊥
r⊥
J0(k⊥r⊥)T (r⊥, Y ) , (11)

where r⊥ is the size of the qq̄ dipole and k⊥ is its conjugate
transverse momentum. The dipole amplitude T is defined
in terms of the correlator of twoWilson lines of gauge fields
in the target as

T (r⊥, Y ) = 1−
1

Nc
Tr
〈
Ũ†(0)Ũ(r⊥)

〉

Y
, (12)

6 Here we present the form of the equation for the case where
the forward scattering amplitude is independent of the impact
parameter. A numerical study of the impact parameter depen-
dence of the BK equation has been performed previously [58]; it
will be considered in future as an extension to this work.
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where we have assumed translation invariance in the trans-
verse plane in order to set the quark transverse coordinate
to 0. Here Ũ is a Wilson line in the fundamental represen-
tation, obtained by replacing in (7) the adjoint generators
T a by the generators ta in the fundamental representation.
However, to evaluate the “unintegrated gluon distribu-

tion” defined in (6), one needs to know the rapidity depen-
dence of the correlator of two Wilson lines in the adjoint
representation,

〈
U(0)U†(r⊥)

〉
Y
. This can be obtained as

follows. In the CGC framework, the weight functional for
the color sources in generating functional can be expressed
in the large Nc and large A limit as a non-local Gaussian
distribution of color sources. In this limit, one can obtain
closed form expressions for expectation values of both the
fundamental and adjoint correlators of Wilson lines7. One
therefore has

Tr
〈
Ũ(0)Ũ†(r⊥)

〉

Y
=Nc e

−CFΓ (r⊥,Y ) ,

Tr
〈
U(0)U†(r⊥)

〉
Y
=N2c e

−CAΓ (r⊥,Y ) , (13)

where CA ≡Nc is the Casimir operator in the adjoint rep-
resentation. The function Γ is proportional to the variance
of the non-local Gaussian weight functional in the gen-
erating functional and is therefore the same in both the
fundamental and adjoint cases. As CA/CF = 2 in the large
Nc limit, (13) and (12) give

1

Nc
Tr
〈
U(0)U†(r⊥)

〉
Y
=Nc [1−T (r⊥, Y )]

2
. (14)

Substituting the LHS side here by the RHS into (6), we
obtain

φA,B(x, k⊥) =
π2R2ANck

2
⊥

2αs

+∞∫

0

r⊥dr⊥J0(k⊥r⊥)

× [1−TA,B(r⊥, ln(1/x))]
2
. (15)

We digress here to note that if instead we had used
the correlator of two Wilson lines in the fundamental rep-
resentation in (6), we would have obtained the following
expression for the unintegrated gluon density:

φ̃A,B(x, k⊥) =
π2R2Ak

2
⊥

2αs

+∞∫

0

r⊥dr⊥J0(k⊥r⊥)

× [1−TA,B(r⊥, ln(1/x))] . (16)

The change from the correlator of Wilson lines in the fun-
damental representation to the adjoint one corresponds to
the emission of the gluon from the triple pomeron vertex
itself. This emission is not prohibited by the Abramovsky–
Gribov–Kancheli (AGK) cutting rules [62] for inclusive
gluon production in high energy QCD. It was argued previ-
ously [63,64] that the numerical difference in the resulting
rapidity distributions is rather small. In Fig. 1, we com-
pare numerical solutions (to be discussed further shortly)

7 For a detailed discussion and relevant references, we refer
the reader to Appendix A of [50].

Fig. 1. The unintegrated gluon distribution obtained from a
correlators in the adjoint representation (15) (dashed lines)
and b correlators in the fundamental representation (see (16))
(solid lines). The input is given by the GBW model for the
proton

for the unintegrated gluon distribution using the corre-
lator of Wilson lines in the adjoint representation (see
(15)) with the one using the correlator of Wilson lines in
the fundamental representation (see (16)). The input at
x0 = 0.01 is given by the GBWmodel for the dipole–proton
cross section reformulated into the unintegrated gluon dis-
tribution function. The shape of the distribution is very
similar, whereas the position of the peak is different. At
Y = 0 the positions of the peaks differ by the ratio of the
CA/CF � 2. At higher values of Y this difference increases
due to the faster evolution of the correlator in the adjoint
representation.
The BK equation is the simplest evolution equation

capturing both the leading ln(1/x) BFKL dynamics at
moderately small values of x, as well as the recombination
physics of high parton densities at very small values of x.
In the limit where the dipole scattering amplitude is small,
T � 1, the non-linear term in (9) can be ignored and the
BK equation reduces to the BFKL equation. In this limit,
the amplitude has the solution

T (r⊥, Y )≈ (r
2
⊥Q

2
0)
1/2 eωαsY exp

(
−
ln2(1/r2⊥Q

2
0)

2βαsY

)

= exp

(
ρ

2
+ωαsY −

ρ2

2βαsY

)
, (17)

where ω = 4 ln 2 ≈ 2.77, β = 28ζ(3) ≈ 33.67 and ρ ≡
ln(r2⊥Q0)

2. If we define the saturation condition as

T (r⊥, Y ) =
1

2
at r⊥ =

2

Qs
, (18)

one gets [65]

Q2s =Q
2
0e
cαsY where c≈ 4.84 . (19)
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Amore careful analysis of the BK equation close to the sat-
uration boundary gives the solution c≈ 4.88. In the strong
field (saturation) limit [66,67], where T ≈ 1, one finds

T (r⊥, Y ) = 1−κ exp

(
−
1

4c
ln2(r2⊥Q

2
s )

)
, (20)

with c≈ 4.84, and where κ is an undetermined constant. In
the large Y asymptotic regime, leading and next-to-leading
corrections to the form of the BK amplitude and the satu-
ration scale have been computed [39,68,69].
The coupling constant αs in (9) is fixed in the leading

logarithmic approximation in 1/x. This leads to a rather
strong dependence of the saturation scale in the leading
logarithmic approximation: Qs ∼ x−λs with λs ≈ 4.88 ᾱs.
For typical values of αs, of order 0.2–0.3, λs is at least a fac-
tor of three higher than fits to the HERA and RHIC data
would suggest [70]. It is therefore desirable to include at
least part of the next-to-leading corrections in ln(1/x) to
the BK equation. Such corrections are known to reduce sig-
nificantly the pomeron intercept in the case of the BFKL
equation.
The BK equation has been solved numerically for both

fixed and running coupling [71–77,58,78]. These solutions
have the following features.

– The dipole amplitude is shown to unitarize, and the so-
lution exhibits geometrical scaling.
– The saturation scale has the behavior in (19) or Qs ∼
exp(
√
λ ln 1/x) in the fixed and running coupling cases

respectively.
– The infrared diffusion problem of the BFKL solution is
cured by the non-linear term in the BK equation.
– Ultraviolet diffusion is still present in the BK equation.
However, it is attenuated by including running coupling
effects [71,72,78,79].

In this work, we solved the BK equation numerically, in
both fixed and running coupling cases, to investigate limit-
ing fragmentation in hadronic collisions. In the fixed coup-
ling case, since realistic values of αs give too high a value
of λs, we solved the BK equation with very small values of
αs chosen to give λs values that are compatible with data
from HERA, RHIC and hadron colliders. (We will see that
these lower values are indeed favored by the data.) This is
not unreasonable because it has been shown [68,69] that
resummed next-to-leading order corrections to the BFKL
equation in the presence of a unitary boundary (à la BK)
give values of the saturation scale exponent λs that are
nearly independent of the energy, as in the LO case, but
with a much smaller value of λs.
The limited running coupling studies we performed did

not give nearly as good agreement with the data than the
fixed coupling studies with the lower values of αs. This is
likely due to the fact that the energy dependence in this
case is much too fast compared to the data. Further, since
our results are sensitive to small transverse momenta, they
will also depend strongly on how one regulates the running
of αs in the infrared. This requires a more detailed study
than reported here. We shall therefore restrict ourselves to
the fixed coupling case in discussing our results in the fol-
lowing section.

As explained before, the “unintegrated gluon distribu-
tions” φA,B are obtained from solutions to (9). At small
values of x, where the gluon density is high, (9) captures
the essential physics of saturation; we therefore use it to de-
termine φ(x, k⊥) for values of x < x0 with x0 = 0.01. For
larger values of x (x≥ 0.01), we used the phenomenological
extrapolation8,

φ(x, k⊥) =

(
1−x

1−x0

)β(
x0

x

)λ0
φ(x0, k⊥) , x > x0 . (21)

The parameter β = 4 is fixed by QCD counting rules [80,
81]. We checked that the results are not sensitive to the
variation of this parameter in the range 4–5. The param-
eter λ0 was varied between 0 and 0.15 in the fits to data
discussed in the following section.
The initial condition for the BK evolution, that gives

φ(x0, k⊥), is given by the McLerran–Venugopalan (MV)
model [43–45] with a fixed initial value of the saturation
scaleQAs (x0). The form of the MV model is

T (r⊥, Y = Y0)

= 1− exp

[

−
g4Ncµ

2
A

2

∫
d2y⊥ [G0(y⊥−G0(y⊥−x⊥))]

2

]

where G0 is a 2-dimensional propagator

G0(y⊥−x⊥) =

∫
d2k⊥
(2π)2

exp(ik⊥ · (x⊥−y⊥))

k2⊥
.

The infrared cut-off ΛQCD = 0.2GeV is taken to regular-
ize the divergence in the MV model. For a gold nucleus,
extrapolations from HERA and estimates from fits to
RHIC data suggest that (QAs (x0))

2 ≈ 2 GeV2. The sat-
uration scale in the proton is taken to be (QAs (x0))

2 =
(QAus (x0))

2 (A/197)1/3. For comparison, we also con-
sidered initial conditions from the Golec-Biernat and
Wusthoff (GBW) model [70] in the form

T (r⊥, Y = Y0) = 1− exp(−r
2Q2s (Y0)) ,

with

Qs(Y0 = ln 1/x0) = (
x0

xGBW
)λGBW/2 ,

(xGBW = 0.000041, λGBW = 0.277) .

The values of QAs were varied in this study to obtain best
fits to the data.

4 Results for limiting fragmentation

Experimental data are presented in terms of the meas-
ured distributions of produced charged hadrons. Our ex-
pression in (5) is for produced gluons. Rapidity distribu-
tions are dominated by low p⊥ (p⊥ ≤ Qs) particles; the

8 A similar extrapolation was also used in [51,52] to study
quark pair production.
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detailed mechanism of how such soft gluons fragment to
form hadrons is unknown. However, in e+e− collisions, sev-
eral studies have been performed of hadronization; it is
observed that at scales comparable to p⊥ ∼Qs, the distri-
bution of produced hadrons mirrors that of the produced
gluons. This hypothesis is known as “parton–hadron” du-
ality [40] and we shall adopt it here.9 We will discuss the
effect of fragmentation functions shortly.
Limiting fragmentation is often experimentally studied

in terms of the measured pseudo-rapidity η of produced
particles. For massless particles, η and y are the same, but
they differ for massive particles. One obtains

y(η, p⊥,m) =
1

2
ln

⎡

⎣

√
m2+p2⊥ch

2η+p⊥shη
√
m2+p2⊥ch

2η−p⊥shη

⎤

⎦ . (22)

We choosem to be of order ofm� 150MeV–300MeV. Our
expression for dN/dy of gluons has a logarithmic diver-
gence at low p⊥; in addition to parton–hadron duality, for
self consistency, we should regulate the corresponding ex-
pression for charged hadrons with the samemass as the one
used in the conversion from y to η. We will later discuss the
sensitivity of our results tom.
We now have all the ingredients necessary to calcu-

late the multiplicity distributions in the color glass con-
densate framework. As discussed previously, experimen-
tal data on pseudo-rapidity distributions in the projectile
fragmentation region scale with η−Ybeam for different en-
ergies. In (5), φA(x1) depends on the difference y−Ybeam
and φB(x2) on the sum y+Ybeam. To provide a sense of
the x’s involved, consider gold–gold collisions at RHIC.
For y = Ybeam, which lies in the fragmentation region,
and p⊥ ∼mN ∼ 1 GeV, x1 ≈ 1 and x2 ≈ 2.5×10−5. One
is therefore probing very small values of x2 in nuclei in
this region10, where the saturation scale Qs(x2) is rather
large. As we discussed previously, in this kinematic region,
because of unitarity, the gluon distribution depends only
weakly on x2 ∼ exp(−(y+Ybeam)). This qualitatively ex-
plains the scaling in the limiting fragmentation region.
We now turn to our results. To reiterate, they are ob-

tained by a) solving the BK equation to obtain (11), and
thereby (15) for the unintegrated distribution for x≤ 10−2,
b) using (21) to determine the large x (x≥ 10−2) behavior,
and c) substituting these in (5) to determine rapidity dis-
tribution of gluons. The pseudo-rapidity distributions are
determined by the transformation in (22).

9 This assumption was also made in [26] and is implicit in
several other works. Note that such an assumption may be
invalidated by final state interactions such as at medium in-
duced parton splitting, namely, “jet quenching”. As we shall
discuss later in detail, we observe that the p⊥ spectral shapes of
softer partons, albeit one would imagine them to interact more
strongly, are closer to that of observed hadrons than those with
p⊥ >Qs. This is fortuitous for the discussion of limiting frag-
mentation here, since dN/dy is dominated by soft momenta.
10 Note that x1 can be larger than unity in a nucleus and could
in principle take values up to A, the number of nucleons.

In Fig. 2 we show pseudo-rapidity distributions of
the charged particles produced in nucleon–nucleon colli-
sions for center-of-mass energies ranging from 53GeV to
900GeV. We have performed calculations for two differ-
ent input distributions at the starting value of x0 = 0.01,
namely, the GBW and MV models. The normalization has
been treated as a free parameter. Extrapolations to large
values of x are performed using the formula in (21). Plots
on the left hand side of Fig. 2 are obtained for λ0 = 0.15
whereas the right hand side plots are done for λ0 = 0.0.
The different values of λs are obtained by varying αs when
solving the BK equation.
Note that while λs controls the growth of Qs with en-

ergy, the amplitude in (17) has the growth rate [39]

λBK = γcλs ≈ 0.63λs , (23)

which is significantly lower. So λs = 0.46, which gives rea-
sonable fits (more on this in the next paragraph) to the pp
data for the MV initial conditions, corresponds to λBK =
0.28, which is close to the value for the energy dependence
of the amplitude in next-to-leading order resummed BK
computations [68,69] and in empirical dipole model com-
parisons to the HERA data [70].
We find that our computations are extremely sensitive

to the extrapolation prescription to large x. This is not
a surprise since we are probing the wave-function of the
projectile at fairly large values of x1. From our analysis,
we see that the data naively favor a non-zero value for λ0
in (21). The zero value of λ0 results in the distributions
which, in both the MV and GBW cases give reasonable fits
(albeit with different normalizations) at lower energies but

Fig. 2. Pseudo-rapidity distributions dN/dη for charged par-
ticles from nucleon–nucleon collisions at UA5 energies [7]

√
s=

53, 200, 546, 900 GeV and PHOBOS data [11] at
√
s= 200 GeV.

Upper plots: initial distribution from the MV model, lower
plots: initial distribution from the GBW model. Left panels:
λ0 = 0.15, right panels λ0 = 0.0
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Fig. 3. The same as Fig. 2 but plotted versus η′ = η−Ybeam to
illustrate the region of limiting fragmentation

systematically become harder relative to the data as the
energy is increased. To fit the data in the MV model up to
the highest UA5 energies, a lower value of λs than that in
the GBWmodel is required. This is connected with the fact
that the MV model has tails which extend to larger values
in k⊥ than in the GBW model. As the energy is increased,
the typical k⊥ ∼Qs(x2) does as well. We will return to this
point shortly.
In Fig. 3 the same distributions are shown as a function

of η′ = η−Ybeam. The calculations for λ0 = 0.15, are con-
sistent with scaling in the limiting fragmentation region.
There is a slight discrepancy between the calculations and
the data in the mid-rapidity region. This discrepancy may
be a hint that one is seeing violations of the k⊥ formalism
in that regime because the k⊥ formalism becomes less re-
liable the further one is from the dilute–dense kinematics
of the fragmentation regions [47–49,46]. This discrepancy
should grow with increasing energy. However, our parame-
ters are not sufficiently constrained that a conclusive state-
ment can be made.
In changing from rapidity to pseudo-rapidity distribu-

tions, one has to use a Jacobian with a mass parameter.
We have chosen this parameter, for consistency, to be the
same as our p⊥ cut-off for the integration over the trans-
verse momentum in the formula for the gluon production.
We have checked the sensitivity of our calculations to vari-
ations in the p⊥ cut-off m in the range 150–300MeV. In
Fig. 4 we show the results for the pp collisions with the two
different values of p⊥,min. = 150 and 300GeV. The ‘dip’ in
the pseudo-rapidity distribution becomes more or less pro-
nounced when the parameter m is decreased or increased
respectively. We note that in order to obtain a reasonable
description of the data we also had to adjust the other pa-
rameters (normalization and λs).
In Fig. 5 we show the extrapolation to higher ener-

gies, in particular the LHC range of energies for the

Fig. 4. Calculations for different values of the infrared pT cut-
off compared to the pp data in Fig. 2

Fig. 5. Predictions for higher center-of-mass energies:
√
s =

2, 8, 14 TeV for GBW input model. The parameter in the large
x extrapolation was set to λ0 = 0.15

calculation with the GBW input. We observed previ-
ously that the MV initial distribution, when evolved to
these higher energies, gives a rapidity distribution which
is very flat in the −5 < η < 5 regime. We noted that
this is because the average transverse momentum grows
with the energy giving a significant contribution from
the high k⊥ tail of the distribution in the MV input
in (21).
The effect of fragmentation functions on softening the

spectra in the limiting fragmentation region can be sim-
ply understood by the following qualitative argument. The
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inclusive hadron distribution can be expressed as

dNh

d2p⊥dy
=

∫ 1

zmin.

dz

z

dNg

d2q⊥dy
Dg→h

(
z =
p⊥

q⊥
, µ2
)
, (24)

where Dg→h(z, µ
2) is the fragmentation function denoting

the probability, at the scale µ2, that a gluon fragment into
a hadron carrying a fraction z of its transverse momentum.
For simplicity, we only consider here the probability for
gluons fragmenting into the hadron. The lower limit of the
integral can be determined from the kinematic requirement
that x1,2 ≤ 1 – we obtain

zmin. =
q⊥

mN
ey−Ybeam ; (25)

if zmin. were zero, the effect of including fragmentation
effects would simply be to multiply (24) by an overall con-
stant factor. At lower energies, the typical value of q⊥ is
small for a fixed y−Ybeam; the value of zmin. is quite low.
However, as the center-of-mass energy is increased, the
typical q⊥ value grows slowly with the energy. This has the
effect of raising zmin. for a fixed y−Ybeam, thereby lowering
the value of the multiplicity in (24) for that y−Ybeam. Note
further that (25) suggests that there is a kinematic bound
on q⊥ as a function of y−Ybeam – only very soft gluons can
contribute to the inclusive multiplicity.
In Fig. 6 we illustrate p⊥ distributions obtained from

the MV input compared to the UA1 data [82]. We compare
the calculation with and without the fragmentation func-
tion. The fragmentation function has been taken from [83].
Clearly the “bare” MV model does not describe the data

Fig. 6. p⊥ distribution from (5) with MV (full squares)
and GBW (full triangles) initial conditions. The MV initial
condition – with the fragmentation function included – is
denoted by the open squares. The distribution is averaged
over the rapidity region y = 0.0–2.5, to compare with data
(in 200 GeV/nucleon proton–antiproton collisions in the same
pseudo-rapidity range) on charged hadron p⊥ distributions
from the UA1 collaboration: full circles

at large k⊥ because it does not include fragmentation func-
tion effects which, as discussed, make the spectrum less
flat. In contrast, because the k⊥ spectrum of the GBW
model dies exponentially at large k⊥, this “unphysical”
k⊥ behavior mimics the effect of fragmentation functions;
see Fig. 6. Hence extrapolations of this model, as shown in
Fig. 5 give a more reasonable looking result. Similar con-
clusions were reached previously in [84].
We next compute the pseudo-rapidity distribution in

deuteron–gold collisions. In Fig. 7 we show the result for
the calculation compared with the dA data [11]. The unin-
tegrated gluons were extracted from the pp and AA data.
The overall shape of the distribution matches well on the
deuteron side with the minimum-bias data. The disagree-
ment on the nuclear fragmentation side is easy to under-
stand since, as mentioned earlier, it requires a better imple-
mentation of nuclear geometry effects. Similar conclusions
were reached in [27–30] in their comparisons to the RHIC
deuteron–gold data.
We now apply our considerations to central nucleus–

nucleus collisions. In Fig. 8 we present fits to data on the
pseudo-rapidity distributions in gold–gold collisions from
the PHOBOS, BRAHMS and STAR collaborations. The
data [11] are for

√
s = 19.6, 130 and 200GeV and the

BRAHMS data [9,10] are for
√
s= 130 and 200GeV. A rea-

sonable description of limiting fragmentation is achieved
in this case as well. One again has discrepancies in the
central rapidity region as in the pp case. As mentioned pre-
viously, a natural explanation for this discrepancy is the
violation of k⊥-factorization. It is expected that these vi-
olations decrease the multiplicity in this regime [47–49,
46] relative to extrapolations using k⊥-factorization. We
find that values of QAs ≈ 1.3 GeV for the saturation scale
give the best fits. This value is consistent with other es-

Fig. 7. Comparison of computations to minimum bias deuteron–
gold data at RHIC [85]. Calculation done using the MV model
as a starting distribution for the evolution
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Fig. 8. Pseudo-rapidity distributions normalized by the num-
ber of participants for charged hadrons in gold–gold collisions
from the PHOBOS collaboration at energies 19.6, 130, 200 GeV
(filled triangles, squares and circles), BRAHMS collaboration
at energies 130, 200 GeV (open squares and circles). The data
from the STAR collaboration at energy 62.4 GeV (open trian-
gles) are not visible on this plot but can be seen more clearly
in Fig. 9. Upper plots: initial distributions from the MV model;
lower plots: initial distributions from the GBW model

timates [47–49,26,86]. Apparently the gold–gold data are
better described by the calculations which have λ0 = 0.0.
This might be related to the difference in the large x dis-
tributions in the proton and nucleus. Also, slightly higher
values of λs are preferred. This variation of the parameters
from the AA to the pp case might also be connected with
the fact that in our approach the impact parameter is inte-
grated out, so that there is no detailed information on the
nuclear geometry. A more detailed calculation with the im-
pact parameter dependence taken into account is left for
future investigations.
In Fig. 9 we show the extrapolation of two calculations

to higher energy
√
s = 5500GeV. We note that the cal-

culation within the MV model gives results which would
violate the scaling in the limiting fragmentation region by
approximately 25% at larger y−Ybeam. This violation is
partly because of the effect of fragmentation functions dis-
cussed previously and in part due to the fact that the in-
tegrated parton distributions from the MV model do not
obey Bjorken scaling at large values of x. In the latter case,
the violations are proportional to ln(Q2s (x2)) as discussed
previously. The effects of the former are simulated by the
GBW model, the extrapolation of which to higher ener-
gies is shown by the dashed line. The band separating the
two therefore suggests the systematic uncertainty in such
an extrapolation coming from a) the choice of initial con-
ditions and b) the effects of fragmentation functions which
are also uncertain at lower transverse momenta.
Finally, the transverse momentum distribution in the

gold–gold collisions is presented in Fig. 10. The data at

Fig. 9. Extrapolation of calculations for gold–gold collisions
shown in Fig. 8 to the LHC energy

√
s = 5500 GeV/ nucleon.

For comparison, the same data at lower energies are shown.
(See Fig. 8.) The band is an estimate of the systematic un-
certainty of our approach. Its lower border corresponds to the
GBW input with λ0 = 0, λs = 0.46, and its upper border to the
MV input with λ0 = 0, λs = 0.46

Fig. 10. p⊥ distribution from (5) with MV (full triangles) ini-
tial conditions. The MV initial condition with the fragmenta-
tion function included is denoted by the full squares. The distri-
bution is averaged over the pseudo-rapidity region y = 0.2–1.4,
to compare with data in 200 GeV/nucleon gold–gold collisions
(open circles)

√
s = 200GeV are from the PHOBOS collaboration [87].
Again, in this case, the calculation without fragmentation
function tends to overshoot the data significantly at high
values of pt. Including fragmentation function effects [83]
results in a better agreement with the shape of the pt dis-
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tribution as expected. A more detailed study to extract
parameters that give the best chi-squared values will be
performed at a later date.

5 Conclusions

We studied here the phenomenon of limiting fragmentation
in the color glass condensate framework. In the dilute–
dense (projectile–target) kinematics of the fragmentation
regions, one can derive (in this framework) an expression
for inclusive gluon distributions which is k⊥-factorizable
into the product of “unintegrated” gluon distributions in
the projectile and target. From the general formula for
gluon production (see (5)), limiting fragmentation is a con-
sequence of two factors.

– Unitarity of the U matrices which appear in the defin-
ition of the unintegrated gluon distribution in (6).
– Bjorken scaling at large x1, namely, the fact that the in-
tegrated gluon distribution at large x depends only on
x1 and not on the scale Qs(x2). (The residual scale de-
pendence consequently leads to the dependence on the
total center-of-mass energy.)

Deviations from the limiting curve at experimentally
accessible energies are very interesting because they can
potentially teach us about how parton distributions evolve
at high energies. In the CGC framework, the Balitsky–
Kovchegov equation determines the evolution of the unin-
tegrated parton distributions with energy from an initial
scale in x chosen to be x0 = 0.01. This choice of scale is
inspired by model comparisons to the HERA data.
We compared our results to data on limiting fragmen-

tation from pp collisions at various experimental facilities
over a wide range of collider energies and to collider data
from RHIC for deuteron–gold and gold–gold collisions. We
obtained results for two different models of initial condi-
tions at x≥ x0; the McLerran–Venugopalan model (MV)
and the Golec-Biernat–Wusthoff (GBW) model. In add-
ition to the two parameters in the initial conditions (λs and
λ0), we also studied the sensitivity of our results to an in-
frared momentum cut-off m (chosen to be the same value
in the y→ η conversion for hadrons).
We found reasonable agreement for this wide range of

collider data for the limited set of parameters. Clearly
these can be fine tuned by introducing further details
about nuclear geometry. That would introduce further pa-
rameters, but on the other hand there are more data for
different centrality cuts as well; we leave these detailed
comparisons for future studies. In addition, an important
effect, which improves agreement with data, is to account
for the fragmentation of gluons in hadrons. In particular,
the MV model, which has the right leading order large
k⊥ behavior, but no fragmentation effects, is much harder
than the data. The latter falls as a much higher power
of k⊥. Since even rapidity distributions at higher energies
data are more sensitive to larger k⊥, we expect this discrep-
ancy to show up in our studies of limiting fragmentation,
and indeed it does. We noticed that taking this into ac-
count leads to much more plausible extrapolations of fits of

existing data to LHC energies. This “gluon fragmentation”
contribution also suggests that the “flat” deviations that
we found (for fits with MV initial conditions) for λs = 0.46
(λBK = 0.28) are diminished.
Clearly, the procedure employed in this paper needs

further improvements. One of them is the impact param-
eter dependence of the unintegrated gluon distribution
functions. We discussed briefly “gluon fragmentation” ef-
fects (with different fragmentation function sets) which
need to be taken into account. Furthermore, large x distri-
butions also need to be better constrained and consistency
with computations of other final states in the CGC frame-
work established. It has recently been suggested that the
derivative of the multiplicity distribution with respect to
η also obeys a universal behavior [88] – this feature of the
data will also be investigated in future. Finally, the factor-
ization formula used in this paper involves only gluons; for
more realistic estimates, one should also include quark dis-
tributions in this framework.
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